Discrete Serrin's problem
نویسندگان
چکیده
منابع مشابه
Positive solutions for discrete fractional initial value problem
In this paper, the existence and uniqueness of positive solutions for a class of nonlinear initial value problem for a finite fractional difference equation obtained by constructing the upper and lower control functions of nonlinear term without any monotone requirement .The solutions of fractional difference equation are the size of tumor in model tumor growth described by the Gompertz f...
متن کاملOptimal Capacities in Discrete Facility Location Design Problem
Network location models comprise one of the main categories of location models. These models have various applications in regional and urban planning as well as in transportation, distribution, and energy management. In a network location problem, nodes represent demand points and candidate locations to locate the facilities. If the links network is unchangeably determined, the problem will be ...
متن کاملGeneralized Jacobian and Discrete Logarithm Problem on Elliptic Curves
Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...
متن کاملSequential Competitive Facility Location Problem in a Discrete Planar Space
In this paper, there are two competitors in a planar market. The first competitor, called, the leader, opens new facilities. After that, the second competitor, the follower, reacts to the leader’s action and opens r new facilities. The leader and the follower have got some facilities in advance in this market. The optimal locations for leader and follower are chosen among predefined candida...
متن کاملThe Discrete Geodesic Problem
We present an algorithm for determining the shortest path between a source and a destination on an arbitrary (possibly nonconvex) polyhedral surface. The path is constrained to lie on the surface, and distances are measured according to the Euclidean metric. Our algorithm runs in time O(n log n) and requires O(n2) space, where n is the number of edges of the surface. After we run our algorithm,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2015
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.01.038